BCMaterials Fortnightly Seminar #83 Manuel Salado - Virginia Vadillo

MANUEL SALADO
(BCMATERIALS)
Introduction to Perovskite solar cells
In recent years, perovskite solar cells (PSCs), has stunned the PV field, by the tremendous research interest owing to their unique combination of high performance and low-cost fabrication process. Compared with the existing technology, PSCs have demonstrated its potential by establishing an unprecedented increment in the PCE from 3.8% to >22.7% (http://www.nrel.gov/ncpv/) in almost one decade. Despite considerable and successful research efforts to increase the PCE, relatively little progress has been made towards increasing the stability of these materials. Different strategies, such as crosslinking, doping, shielding with molecularly designed materials or enveloping the perovskite molecular structure in a foreign chemical environment, have been reported for improved humidity and UV-induced degradation. However, increases in stability generally result in reduced PCEs. The problem of stability was partially overcome with the use of mixed perovskites, but these materials still cannot fulfil the commercial requirements. On the other hand, the microstructure and phase purity of the films rely on the perovskite formation processes. A variety of different deposition techniques have been used with the aim to achieve high quality perovskite layer, such as, two step (sequential deposition), vacuum evaporation, vapour-assisted deposition or recently solvent engineering approach. In this talk, an introduction of the properties, deposition and characterization techniques of perovskite solar cell will be explained.
VIRGINIA VADILLO
(BCMATERIALS)
High magnetization nanoparticles for magnetorheological fluids application
The aim of this project is to prepare nanoparticles with high saturation magnetization to develop magnetic fluids with high magnetorheological effect. FeCo nanoparticles present the highest magnetization known. However, they are very reactive and they can form aggregates. It will be employed chemical and physical methods to synthetize stable FeCo nanoparticles. Sol-gel, hydrothermal and polyol will be used as chemical methods and ball milling and laser bombing as physical methods. The shape, size and the structure of the nanoparticles will be measured with SEM, EDX and XRD. The magnetic properties will be studied by means of VSM. The most interesting nanoparticles will be employed for the magnetorheological fluids.
Related news
Qi Zhang, nombrado profesor visitante de la NUAA (China)
Nuestro Ikerbasque Research Professor Qi Zhang fue nombrado este mes de abril profesor invitado de la Nanjing University of Aeronautics and Astronautics (NUAA). Zhang, que cuenta con una dilatada...La red doctoral ECLectic se reúne en BCMaterials
BCMaterials fue anfitrión, entre el 1 al 4 de abril, del segundo encuentro de la red doctoral Marie Curie ECLectic. Nuestro centro forma parte del consorcio de 10 universidades, centros de...BCMaterials, anfitrión de la Asamblea general del proyecto BIOntier
Los días 1 y 2 de abril, la sede de BCMaterials acogió la segunda asamblea general del proyecto Horizon Europe BIOntier “BreakIng FrOntiers in sustainable and circular biocomposites with high...Fuelium, premio BEST 2025 a la start-up vasca más circular
Fuelium, a startup co-founded and scientifically advised by our Ikerbasque Research Associate Professor Juan Pablo Esquivel, has been honored as the Most Circular Basque Startup at the Basque...