BCMaterials Fortnightly Seminars #15
“Shape Memory Polymers: gamma irradiated polycyclooctene”
Nuria García-Huete
(BCMaterials)
Gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical, chemical and mechanical properties. Gamma irradiation originates free radicals able to induce chain scission or recombination of radicals, which can induce, for example, crosslinking processes. The aim of this work is to research the structural, thermal and mechanical changes induced on a commercial polycyclooctene (PCO) when it is irradiated with a gamma source of 60Co at different doses (25-200 kGy). After gamma irradiation, gel content was determined by Soxhlet extraction in cyclohexane. Furthermore, thermal properties were evaluated before and after Soxhlet extraction by means of Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC), as well as mechanical properties were measured by Dynamic Mechanical Thermal Analysis (DMTA). The results showed the variations of the properties depending on the irradiation dose. Finally, a first approach to evaluate qualitatively the shape memory behaviour of all irradiated PCO samples was performed by visually monitoring shape recovery process.“Shedding light on the origin of multiferroicity in Mn1-xCoxWO4”
Irene Urcelay-Olabarria
(BCMaterials)
The use of the superspace symmetry analysis allows to rationalize the physical properties induced by incommensurate magnetic structure (ICMS) [1]. The ICMS of the type II Mn1-xCoxWO4 multiferroics have been studied in the light of this formalism. MnWO4 is a multiferroic material in which the magnetic order of one of its magnetic phases induces ferroelectricity. Like most multiferroic materials MnWO4 is extremely sensitive to small perturbations such as chemical substitution. It turned out that doping with Co2+ is particularly interesting since it strongly stabilizes the multiferroic phase at low temperatures, and moreover, by increasing the cobalt amount in the crystals (x>0.075) the orientation of the electric polarization flops from the b axis to the ac plane [2,3]. This change of orientation is linked to the symmetry change. The ICMS of x = 0 and x = 0.10 compounds, which exhibit completely different behavior, have been studied thoroughly using superspace formalism. We have found, not only the symmetry of the magnetic structures and their intrinsic restrictions, but also information about the tensor properties of each incommensurate phase, such as ferroelectricity or magnetostructural properties [4] of both compounds.Related news
Charla invitada con Marco Sangermano el 13 de noviembre
BCMaterials ofrecerá una nueva charla invitada el próximo 13 de noviembre, a cargo de Marco Sangermano, profesor pleno de Ciencia y Tecnología de Polímeros en el Politécnico de Turín (Italia) La...Congreso IMOH 2024: éxito científico y de participación
Del 15 al 17 de octubre, la sede de BCMaterials albergó la segunda edición del congreso ‘IMOH 2024, 2nd International Meeting on Challenges and Opportunities for HiCANS’, dedicado a la ciencia e...Kick-off meeting del proyecto europeo BIOntier
A mediados de octobre se celebró en Heraclion (Creta-Grecia) la reunión inaugural del proyecto BIOntier (BreakIng FrOntiers in sustainable and circular biocomposites with high performance for multi-...Nueva portada en Advanced Electronic Materials
La publicación realizada por BCMaterials y colaboradores “Printed Memristors: An Overview of Ink, Materials, Deposition Techniques, and Applications”, ha sido seleccionada como portada de la Advanced...