PhD Results #5
MIKEL RINCÓN
(BCMATERIALS)
Magnetic inks based on water-soluble cellulose derivatives for Screen-printing
Although magnetic materials are currently being used in a plethora of applications, their fabrication approaches often involve expensive, non-scalable, time-consuming and often toxic processes. Here we report a scalable and environmentally-benign fabrication of free-standing magnetic films and screen printing ink based on cellulose derivatives through the combination of cobalt ferrite (CoFe2O4) nanoparticles with methyl cellulose (MC), hydroxypropyl cellulose (HPC) and sodium carboxymethyl cellulose (NaCMC). Crack-free films with homogeneously dispersed nanoparticles having concentrations up to 50 wt.% are fabricated by doctor blade casting. Besides, the same materials have been used as screen printing ink using mechanically flexible microporous paper as substrates. Vibrating-sample magnetometer (VSM) results demonstrate that fabricated patterns present enough magnetization to be used as actuators and sensors.
BRUNO HERMENEGILDO
(BCMATERIALS)
Hybrid fibrous microenvironments for muscle tissue engineering
To mimic the natural environment of tissues, in-vitro, support structures are necessary in order to allow for healthy cell and tissue development. Hydrogels have become popular materials to develop these structures due to their many attractive properties; however, hydrogels alone cannot provide all the necessary stimuli and microenvironmental needs for cell development. Likewise, most hydrogels are fragile and not suitable for any load-bearing applications, or any others that cause high mechanical stress on materials.
Incorporating micro and nanoscale electroactive polymers in a hydrogel scaffold, and stimulating these polymers externally so that they can in turn stimulate the incorporated cells, allows for in-vitro mimicry of the normal conditions of muscle cell growth and differentiation, as well as mechanical reinforcement of the existing hydrogel. In this context, the present work focuses on the development of electrospun electroactive polymer fibers, further modified with ionic liquids or magnetoelectric particles to allow electro and mechanical stimuli to be applied to the cells, for future fabrication of a functionalized hybrid hydrogel scaffolds for muscle tissue engineering.Related news
Congreso IMOH 2024: éxito científico y de participación
Del 15 al 17 de octubre, la sede de BCMaterials albergó la segunda edición del congreso ‘IMOH 2024, 2nd International Meeting on Challenges and Opportunities for HiCANS’, dedicado a la ciencia e...Kick-off meeting del proyecto europeo BIOntier
A mediados de octobre se celebró en Heraclion (Creta-Grecia) la reunión inaugural del proyecto BIOntier (BreakIng FrOntiers in sustainable and circular biocomposites with high performance for multi-...Nueva portada en Advanced Electronic Materials
La publicación realizada por BCMaterials y colaboradores “Printed Memristors: An Overview of Ink, Materials, Deposition Techniques, and Applications”, ha sido seleccionada como portada de la Advanced...BCMaterials pone en marcha la iniciativa 'Materials for Society'
BCMaterials puso en el mes de octubre la primera piedra de la iniciativa ‘Materials for Society’. Este proyecto científico, cultural y social tiene como objetivo explorar la implicación de la ciencia...