ICM2015 - Prof. Jose Manuel Barandiaran Semi-Plenary talk
[su_row][su_column size="1/3"]
[/su_column] [su_column size="2/3"]
Profesor Jose Manuel Barandiaran will be in the ICM2015 in Barcelona making a Semi-Plenary talk in the room F of the Cataluña Congress Palace (Palau de Congressos de Catalunya):
You can view the day program here.FERROMAGNETIC SHAPE MEMORY THIN FILMS: STRUCTURE AND MAGNETIC ANISOTROPY
JM BARANDIARAN1, VA CHERNENKO1,2, IR ASEGUINOLAZA1 1BCMaterials &University of the Basque Country (UPV/EHU), Bilbao, Spain 2Ikerbasque, the Basque Foundation for Science, Bilbao, Spain [/su_column][/su_row] Ferromagnetic shape memory alloys (FSMA) such as off-stoichiometric Ni-Mn-Ga Heusler compounds, show the “magnetic-field-induced strain” (MFIS) effect, which is due to the mobile martensitic microstructure and the strong coupling between elastic and magnetic properties. Due to their high power density, these materials have a great potential to be used in magnetic MEMS. In the present work we overview recent advances in submicron FSMAs thin films. Particular emphasis is given to the structure of the films and to their magnetic anisotropy. Polycrystalline films deposited onto cold substrates have (220) out-of-plane fiber texture. Films grown onto hot substrates have epitaxial structures. The symmetry and strength of the magnetic anisotropy (MA) of the films have been studied by ferromagnetic resonance (FMR). They are controlled by the film crystallography, the martensitic nanostructure, the type of substrate and film thickness. The effect of the substrate in the anisotropy is demonstrated by comparing the in plane MA for a Ni-Mn-Ga film grown onto NaCl (001) and the out of plane oblique anisotropy in an identical film with the same texture deposited onto Si (001). Another important factor determining the MA is the film-substrate stress that determines the transformation volume strain. A reduction of the MA by one order of magnitude is found by FMR in single crystalline Ni-Mn-Ga films onto MgO (100). These results are explained in the framework of a magnetoelastic model of the martensite involving second- and forth-order magnetic anisotropy constants, which, thereof, can be evaluated from the experimental data. In these films the estimated value of the magnetic domain wall width is comparable with the width of the twins, indicating that the magnetic moment in neighbor twins are strongly coupled by the exchange interaction. Applications of single and double beam Si cantilevers, with deposited submicron Ni-Mn-Ga films are briefly discussed.Related news
Invited Talk with Marco Sangermano on November 13
BCMaterials will offer a new invited talk on Nov 13, by Marco Sangermano, Full Professor of Polymer Science and Technology at Politecnico di Torino (Italy) The talk, which will take place in the…Scientific and Participation Success for IMOH 2024 Conference
From 15 to 17 October, the BCMaterials headquarters hosted the second edition of the ‘IMOH 2024, 2nd International Meeting on Challenges and Opportunities for HiCANS’ congress, dedicated to neutron…Kick-off Meeting of the BIOntier European project
The kick-off meeting of the BIOntier project (BreakIng FrOntiers in sustainable and circular biocomposites with high performance for multi-sector applications) was held in mid-October in Heraklion (…New cover on Advanced Electronic Materials
A contribution from BCMaterials and colleagues “Printed Memristors: An Overview of Ink, Materials, Deposition Techniques, and Applications”, has been selected as cover of the Advanced Electronic…