BCMaterials Fortnightly Seminar #62: Catarina Lopes & Eduardo Fernández

CATARINA LOPES
(BCMATERIALS)
Fabrication of pure β-PVDF film in a 3D shape
Polymer piezoelectric materials are currently the focus of many interests, due to its capacity to combine lightless and flexibility with the generation of an electrical response under a mechanical deformation (and the inverse). Particularly, Poly(vinilidene fluoride) - PVDF- is the polymer of choice for an increasing number of applications since it has the best all-around electroactive properties. However, PVDF is a polymorph polymer and the crystallization in the b-phase, the one that present piezoelectric properties, only occurs under specific conditions. Currently it is impossible to obtain pure b-PVDF directly from the melt, what is the source of some problems in printing processes or in the polymer coating of irregular surfaces. In this work, this problematic will be addressed and a new technique for the crystallization of a pure b-PVDF film with a 3D shape in the b-phase is going to be described.EDUARDO FERNÁNDEZ
(BCMATERIALS)
Block Copolymers Hierarchical Templating of BiFeO3/CoFe2O4 Multiferroic Nanocomposite
In a vertically aligned nanocomposite oxide thin film, two co-deposited, immiscible oxide phases grow epitaxial on a single crystal substrate to form a two-phase columnar structure such as a checkerboard, a labyrinth, or pillars of one phase embedded in a matrix of the other phase. Oxide nanocomposite films can show multi-functionality arising from the properties and geometries of the phases, and strain mediated coupling between the two phases can lead to magneto- electric behavior when one phase is ferroelectric (BiFeO3) and the other ferromagnetic (CoFe2O4). In order to use multiferroic columnar nanostructures in device applications, it is necessary to control the location of the pillars on the substrate. Templating the ferromagnetic pillar locations can be performed by Electron beam lithography (EBL) ion milling, but is restricted to small-area fabrication. It can be also done into large areas by lift-off process with hard masks made from EBL-patterned gold or from anodic aluminum oxide to create ferromagnetic nuclei with a 200-300 nm period. Block copolymers Self-assembled block copolymer thin films offer a next-generation nanolithography method that could overcome the cost and resolution challenges facing current UV photolithography technology.Related news
Qi Zhang Appointed Visiting Professor at NUAA (China)
Our Ikerbasque Research Professor, Qi Zhang, was appointed visiting professor at Nanjing University of Aeronautics and Astronautics (NUAA) this April. Zhang, who has an extensive research career in…ECLectic Doctoral Network Meets at BCMaterials
BCMaterials hosted the second meeting of the Marie Curie ECLectic doctoral network from April 1 to 4. Our center is part of the consortium of 10 European universities, research centers, and companies…BCMaterials Host of the BIOntier Project General Assembly
On April 1 and 2, BCMaterials headquarters hosted the second general assembly of the Horizon Europe BIOntier project, "BreakIng FrOntiers in Sustainable and Circular Biocomposites with High…Fuelium Wins BEST 2025 Award for Most Circular Basque Startup
Fuelium, a startup co-founded and scientifically advised by our Ikerbasque Research Associate Professor Juan Pablo Esquivel, has been honored as the Most Circular Basque Startup at the Basque…