BCMaterials Fortnightly Seminar #85 Sofía Domínguez - Cristian Mendes - Liliana Fernandes

SOFÍA DOMÍNGUEZ
(BCMATERIALS)
Metal organic frameworks for heavy metals elimination
Contamination of clean water resources by heavy metals is a major environmental concern. Therefore, research is focused on developing filters with high selective and capacitive active materials to capture heavy metals in order to solve this problem. MOFs, which are polymeric metal organic frameworks having an ordered and crystalline structure, have appeared as a novel and promising adsorbents among others such as composites, zeolites, silica nanoparticles, etc., due to their potential to capture different kind of organic and inorganic chemicals.
CRISTIAN MENDES
(BCMATERIALS)
The influence of the postcuring process on the properties of 3D printed pieces
The three-dimensional (3D) printing technology have changed the modern manufacturing of many objects. Thus, stereolithography (SLA), one 3D printing technique, is becoming at an important technique to construct numerous small pieces and, in particular, a much applied technique in research. However, it has numerous drawbacks such as the limited amount of materials available or the lack of knowledge of the properties of the final piece. For this reason, as it was observed that the curing during the printing process is incomplete, in this work it has been evaluated the influence of the postcuring process on the final properties of the printed pieces. Two type of postcuring process has been selected in this study, both at room temperature: the effect of the time, and the effect of the exposure to an UV light. Both postcuring methods have been proven effective to fully postcured the pieces after 30 hours. In addition, it has been observed that the thermal properties of the material do not depend on how the postcuring process is. Nevertheless, a homogenous high crosslinked material with better mechanical properties is obtained with the UV postcuring process.
LILIANA FERNANDES
(BCMATERIALS)
Magnetic field perturbations induced by thermoelectric effects
Magnetic fields arising from thermoelectric currents can contribute to the measurement degradation of sensitive instruments. This fact has been experienced in satellites and spacecrafts and can have important implications in orientation and communication systems. However, its origin is not completely understood and extend thermoelectric/ magnetic formulations to better understand specific conditions that occur in space mission scenarios and to predict the magnetic fields generated from thermoelectric currents in space mission environments is needed. Computational simulations have been used to study these thermoelectric/ magnetic effects to be further validated by experimental results with the objective of identifying and developing possible mitigation technologies.
Related news
Qi Zhang Appointed Visiting Professor at NUAA (China)
Our Ikerbasque Research Professor, Qi Zhang, was appointed visiting professor at Nanjing University of Aeronautics and Astronautics (NUAA) this April. Zhang, who has an extensive research career in…ECLectic Doctoral Network Meets at BCMaterials
BCMaterials hosted the second meeting of the Marie Curie ECLectic doctoral network from April 1 to 4. Our center is part of the consortium of 10 European universities, research centers, and companies…BCMaterials Host of the BIOntier Project General Assembly
On April 1 and 2, BCMaterials headquarters hosted the second general assembly of the Horizon Europe BIOntier project, "BreakIng FrOntiers in Sustainable and Circular Biocomposites with High…Fuelium Wins BEST 2025 Award for Most Circular Basque Startup
Fuelium, a startup co-founded and scientifically advised by our Ikerbasque Research Associate Professor Juan Pablo Esquivel, has been honored as the Most Circular Basque Startup at the Basque…